REALM PROJECT
REopening Archives, Libraries, and Museums

c.lc/realm-project
#REALMproject
Panelists

Sharon Streams
Director
WebJunction, OCLC

Kendra Morgan
Senior Program Manager
WebJunction, OCLC

Marvin D. Carr
Senior Advisor
Institute of Museum and Library Services

Will Richter
Principle Research Scientist
Battelle

Tom Mera
Project Manager
Battelle

This document synthesizes various studies and data; however, the scientific understanding regarding COVID-19 is continuously evolving. This material is being provided for informational purposes only, and readers are encouraged to review federal, state, tribal, territorial, and local guidance. The authors, sponsors, and researchers are not liable for any damages resulting from use, misuse, or reliance upon this information, or any errors or omissions herein.
We want to hear from you!

- We’ll use chat in Webex and YouTube for those watching livestream
- To access Poll Everywhere, open a new browser and go to: PollEv.com/oclc
Where are you joining us from today?
REALM Project overview

OCLC, IMLS, and Battelle formed a partnership to conduct research on how long the COVID-19 virus survives on materials that are prevalent in libraries, archives, and museums.

The project will draw upon the research to produce authoritative, science-based information on how—or if—materials can be handled to mitigate exposure to staff and visitors.
Organizational roles

• IMLS
• OCLC
 • Executive Project Steering Committee
 • Scientific Working Group
 • Operations Working Group
• Battelle
Project activities

• Review and summarize relevant authoritative research
• Ongoing engagement with representatives and subject matter experts from archives, libraries, and museums
• Laboratory testing of materials
• Synthesize the above inputs into toolkit resources
• Share project information and toolkit resources
REALM Project research

- Battelle is conducting laboratory studies of how long SARS-CoV-2 survives on materials commonly found in libraries, archives, and museums.
 - The results of test set 1, which studied five library materials, were published on June 22, 2020.
 - The results of test set 2, which studied five additional library materials, were published on June 25, 2020.
- Battelle will continue to test materials, in sets of five items per test. Results of test set 3 are expected to be published by the end of August 2020.
- Battelle reviewed SARS-CoV-2 literature available as of May 2020. The resulting Systematic Literature Review was published on June 17, 2020.
- Battelle will conduct a second literature review in Phase 2 of the REALM project.
PHASE 1

MAY – AUGUST 2020

Preparing for reopened libraries:
Research on high-priority materials and workflows

PHASE 2

JUNE – OCTOBER 2020

Additional research to support operations of libraries, archives, and museums

PHASE 3

OCTOBER 2020 – SEPTEMBER 2021

Monitor, update, and communicate
Phase 1 literature review questions

How might the virus spread through public library general operations?

How long does the virus survive on material surfaces through environmental attenuation? (Virus dying naturally, without intervention.)

How effective are various prevention and decontamination measures that are readily available to public libraries in the near term? (Cleaning agents, PPE, shields, etc.)
State of COVID-19 research

- Because SARS-CoV-2 is emerging, knowledge about it is a work in progress; scientists are actively working to study and understand the virus.

- **The human infectious dose is still unknown.** Studies of other viruses (e.g. SARS-CoV, MERS, influenza) have shown a wide range.

- More empirical studies and peer-reviewed publications are needed to verify, expand, correct, and refute results from early work and fill in gaps in the research.

- First literature review was completed in May.

- A second review will be conducted this month.
Literature Review Process

- Search term development
- Relevancy review of search results
- QC of relevancy reviews
- Abstracting and summarizing relevant articles
- Writing the first draft
- Revising/finalize draft
How the virus spreads

From the review of published scientific literature:

• SARS-CoV-2 is generally thought to spread via:
 1. Direct transmission: virus-containing water droplets expelled from infected persons
 2. Indirect transmission: Objects, or fomites, can harbor the virus for an extended period of time after being contaminated by an infected individual.

• Other areas that require more exploration are aerosol particle transmission and human matter (in solid and aerosol).

• Environmental factors such as humidity, temperature, ventilation/air flow, and air conditioning may also affect the spread of SARS-CoV-2.
Survival of virus on surfaces

From the review of published scientific literature:

• If SARS-CoV-2 is transferred to a physical surface, its survival time appears to vary based on material composition and roughness, before dying off on its own through natural attenuation.

• A few early studies (not peer-reviewed) reported that the virus may survive longer on plastics and stainless steel than on paper products and other metals, such as copper.

• However, it is not possible to draw firm conclusions from the results:
 – Small number of studies
 – Inconsistent experimental design
Prevention and decontamination

Researchers suggested several feasible, low-cost options for reducing the presence of SARS-CoV-2, which may help keep prevent spread:

- Clean surfaces often
- Practice social distancing
- Wash hands frequently
- Wear personal protective equipment (PPE)

Other factors that may impact survivability and help control spread may be ways that need more studies to find out if they work are:

- Heat treatment
- Sunlight and other light-based treatments
- Ventilation systems
- Open spaces
Live poll

If your facilities are open or partially open, are protocols to reduce human transmission such as social distancing, masks, hand sanitizing or temperature checks:

a. Required for the public
b. Required for staff
c. Recommended for the public
d. Recommended for staff
e. Neither required nor recommended for the public
f. Neither required nor recommended for staff
LAB TESTING
Testing overview

Objectives
• Determine the affect of ambient environmental conditions on the SARS-CoV-2 virus when applied to common materials found in libraries, archives and museums
• Provide data to OCLC/IMLS for selecting potential quarantine durations before materials can return to public circulation

Experimental design
• 5 test rounds, 5 material types per round
• Droplets of live virus applied to material surface via ‘fake spit’
• Materials stored in stacked or unstacked configurations
• Quantity of viable virus was measured at selected time points to capture the attenuation or drop in total virus
Testing walkthrough

• Material prep:
 – Cut each material type into rectangular coupons

• Material inoculation:
 – Apply droplets of virus stock solution with a known starting concentration of virus.

• Environmental testing and analysis:
 – At each timepoint, a set of coupons are removed and processed to measure the quantity of virus, typically on a Log scale (e.g. 5 Log = 100k virus count).

• Limit of quantification (LOQ):
 – Once the virus count drops below 13.1, researchers can only determine the presence or absence of virus, manually under the microscope.

• Limit of detection (LOD):
 – Absence of virus in material sample or complete attenuation.
Test 1 SARS-CoV-2 natural attenuation (unstacked*)
Test 2 SARS-CoV-2 natural attenuation (stacked)
Test 1 and Test 2 results (10 items)

<table>
<thead>
<tr>
<th>Test #</th>
<th>ITEM</th>
<th>ATTENUATION DAYS</th>
<th>CONFIGURATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hardback book cover</td>
<td>1</td>
<td>Not stacked</td>
</tr>
<tr>
<td>1</td>
<td>Softback book cover</td>
<td>1</td>
<td>Not stacked</td>
</tr>
<tr>
<td>1</td>
<td>Plain paper pages</td>
<td>3</td>
<td>Inside closed book</td>
</tr>
<tr>
<td>1</td>
<td>Plastic book covering</td>
<td>3</td>
<td>Not stacked</td>
</tr>
<tr>
<td>1</td>
<td>DVD case</td>
<td>1</td>
<td>Not stacked</td>
</tr>
<tr>
<td>2</td>
<td>Braille paper pages</td>
<td>4</td>
<td>Stacked</td>
</tr>
<tr>
<td>2</td>
<td>Glossy pages in coffee table book</td>
<td>4</td>
<td>Stacked</td>
</tr>
<tr>
<td>2</td>
<td>Children’s board book (inside)</td>
<td>4</td>
<td>Stacked</td>
</tr>
<tr>
<td>2</td>
<td>Magazine pages</td>
<td>4*</td>
<td>Stacked</td>
</tr>
<tr>
<td>2</td>
<td>Archival folders</td>
<td>2</td>
<td>Stacked</td>
</tr>
</tbody>
</table>

* The magazine pages showed a trace amount of virus at four days. Day four was the final timepoint tested.
Test 3 on plastic materials

- Talking book cassettes (ABS)
- DVD (polycarbonate)
- Acrylic sheet (Plexiglass)
- LDPE bag (polyethylene)
- HDPE container (polyethylene)
Upcoming research

• Phase 2 lab testing (10 items total)
 – Test 4 results in late August; Test 5 in September
• Phase 2 literature review complete in early September
• Plan Phase 3 project scope
Coming soon

• New project website.
• Shareable resources in a variety of formats that will apply the research.
• Continuing to learn from archives, libraries and museums during their reopening to gain real-world perspectives.
What type of information would help you the most in the coming months?
• An online community to connect with colleagues around COVID-19 questions and procedures.
• Printable materials to help communicate COVID-19 information to stakeholders and/or the public.
• Short videos to explain test results and the testing science.
• Webinars to learn about test results and new resources.
• Additional clarification on the science and testing being conducted by Battelle.
• Examples of what other libraries, archives, or museums are doing.
• A summary of current research on COVID-19.
Questions?

Sign up for the REALM Project email list to receive updates.

Submit questions to oc.lc/realm-questions